Equilibrium and kinetic folding pathways of a TIM barrel with a funneled energy landscape.

نویسندگان

  • John M Finke
  • José N Onuchic
چکیده

The role of native contact topology in the folding of a TIM barrel model based on the alpha-subunit of tryptophan synthase (alphaTS) from Salmonella typhimurium (Protein Data Bank structure 1BKS) was studied using both equilibrium and kinetic simulations. Equilibrium simulations of alphaTS reveal the population of two intermediate ensembles, I1 and I2, during unfolding/refolding at the folding temperature, Tf = 335 K. Equilibrium intermediate I1 demonstrates discrete structure in regions alpha0-beta6 whereas intermediate I2 is a loose ensemble of states with N-terminal structure varying from at least beta1-beta3 (denoted I2A) to alpha0-beta4 at most (denoted I2B). The structures of I1 and I2 match well with the two intermediate states detected in equilibrium folding experiments of Escherichia coli alphaTS. Kinetic folding simulations of alphaTS reveal the sequential population of four intermediate ensembles, I120Q, I200Q, I300Q, and I360Q, during refolding. Kinetic intermediates I120Q, I200Q, and I300Q are highly similar to equilibrium alphaTS intermediates I2A, I2B, and I1, respectively, consistent with kinetic experiments on alphaTS from E. coli. A small population (approximately 10%) of kinetic trajectories are trapped in the I120Q intermediate ensemble and require a slow and complete unfolding step to properly refold. Both the on-pathway and off-pathway I120Q intermediates show structure in beta1-beta3, which is also strikingly consistent with kinetic folding experiments of alphaTS. In the off-pathway intermediate I(120Q), helix alpha2 is wrapped in a nonnative chiral arrangement around strand beta3, sterically preventing the subsequent folding step between beta3 and beta4. These results demonstrate the success of combining kinetic and equilibrium simulations of minimalist protein models to explore TIM barrel folding and the folding of other large proteins.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetry and frustration in protein energy landscapes: a near degeneracy resolves the Rop dimer-folding mystery.

Protein folding has become one of the best understood biochemical reactions from a kinetic viewpoint. The funneled energy landscape, a consequence of the minimal frustration achieved by evolution in sequences, explains how most proteins fold efficiently and robustly to their functional structure and allows robust prediction of folding kinetics. The folding of Rop (repressor of primer) dimer is ...

متن کامل

Buffed energy landscapes: another solution to the kinetic paradoxes of protein folding.

The energy landscapes of proteins have evolved to be different from most random heteropolymers. Many studies have concluded that evolutionary selection for rapid and reliable folding to a given structure that is stable at biological temperatures leads to energy landscapes having a single dominant basin and an overall funnel topography. We show here that, although such a landscape topography is ...

متن کامل

Topography of funneled landscapes determines the thermodynamics and kinetics of protein folding.

The energy landscape approach has played a fundamental role in advancing our understanding of protein folding. Here, we quantify protein folding energy landscapes by exploring the underlying density of states. We identify three quantities essential for characterizing landscape topography: the stabilizing energy gap between the native and nonnative ensembles δE, the energetic roughness ΔE, and t...

متن کامل

Discrete Kinetic Models from Funneled Energy Landscape Simulations

A general method for facilitating the interpretation of computer simulations of protein folding with minimally frustrated energy landscapes is detailed and applied to a designed ankyrin repeat protein (4ANK). In the method, groups of residues are assigned to foldons and these foldons are used to map the conformational space of the protein onto a set of discrete macrobasins. The free energies of...

متن کامل

Multiple pathways on a protein-folding energy landscape: kinetic evidence.

The funnel landscape model predicts that protein folding proceeds through multiple kinetic pathways. Experimental evidence is presented for more than one such pathway in the folding dynamics of a globular protein, cytochrome c. After photodissociation of CO from the partially denatured ferrous protein, fast time-resolved CD spectroscopy shows a submillisecond folding process that is complete in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 89 1  شماره 

صفحات  -

تاریخ انتشار 2005